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(57) ABSTRACT

The present invention provides an accommodative intraocu-
lar lens (AIOL) system and method for improving accommo-
dation with an intraocular lens. The method involves insertion
into the capsular bag of a flexible optic holder comprising a
plurality of haptics configured to allow the capsular bag to be
sectioned at regular intervals following fusion of the capsular
bag. The haptics of the optic holder are designed to allow
maximum fusion of the anterior and posterior leaves of the
capsular bag following placement of the optic holder in the
capsular bag. Following introduction of the optic holder into
the capsular bag, the natural or assisted process of fibrosis/
fusion of the capsular bag occurs, thereby sealing and
securely capturing the haptics within the capsular bag. Sub-
sequently, several cuts are made in the fibrotic capsular bag at
intervals between haptics, allowing the haptics to move inde-
pendently, thereby effectively restoring some of the flexibility
that the capsule possessed prior to fibrosis and restoring some
of the zonular force on the capsule.

20 Claims, 13 Drawing Sheets
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ACCOMMODATIVE INTRAOCULAR LENS
AND METHOD OF IMPROVING
ACCOMMODATION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a U.S. Non-provisional applica-
tion that claims the priority of U.S. provisional application
No. 61/353,273, filed Jun. 10, 2010 and U.S. provisional
application No. 61/368,862, filed Jul. 29, 2010. The contents
of those applications are hereby incorporated by reference
into the present disclosure in their entirety.

TECHNICAL FIELD

The present invention relates generally to intraocular
lenses. More particularly, the present invention relates to
accommodative, intraocular lens systems and methods for
improving accommodation.

BACKGROUND INFORMATION

Under normal conditions, a healthy human eye focuses on
near and distant objects by contraction and relaxation of the
ciliary muscle thereby contracting and releasing the tension
on the zonules in the eye. The contraction of the ciliary
muscle releases zonular tension (accomodative state) and
allows the lens to alter to a more globular or spherical resting
shape. The relaxation of the ciliary muscle increases tension
on zonules and elastic forces in the eye tissue overcome the
inherent lens elasticity and result in stretching the lens equa-
tor and flattening the lens curvature (un-accomodative state).

In certain instances, for example when age-related opaci-
fication of the lens (cataract) interferes with vision, the natu-
ral crystalline lens of the eye needs to be removed. Generally,
the natural lens is replaced with an artificial one, for example,
an intraocular lens (IOL). Unfortunately, conventional IOLs,
even those that profess to be accommodative, may be unable
to provide sufficient spatial displacement of the lens along the
optical axis to provide an adequate amount of accommoda-
tion for near vision.

In conventional extracapsular cataract surgery, the crystal-
line lens matrix is removed by phacoemulsification through a
curvilinear capsularhexis leaving intact the thin walls of the
anterior and posterior capsules, together with zonular liga-
ment connections to the ciliary body and ciliary muscles. An
intraocular lens is then placed in the capsular bag, which
collapses around the IOL.

Conventional single-optic accommodative intraocular
lenses (AIOL) rely on the interaction of the ciliary muscle
with the zonule and capsule to induce movement of the optic
of the AIOL along its optical axis. Typically, the AIOL is
secured within the capsular bag by two or more haptics that
translate the radial stretching force exerted on the capsular
bag by the zonules in an attempt to achieve the desired axial
displacement of the optic.

However, during the post-implantation fibrotic healing
process, the anterior capsule fuses with the posterior capsule
to form a rigid capsular disc. Loss of elasticity of the capsular
disc results and constrains the amount of movement that can
be generated by the zonular force or elastic recoil of the
intraocular lens and therefore, leads to a decrease in the
amount of axial displacement of the lens that can be achieved.

Various lens systems have been designed to address this
loss of accommodation. Passive-shift single-optic lenses, the
only accommodative lens currently marketed, were designed
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to move forward under ciliary muscle contraction. Accom-
modation in these systems, however, remains limited by the
loss of elasticity in the post-fibrotic capsule. Even the limited
amount of accomodative amplitudes generated by these
lenses immediately after surgery is lost within the first few
weeks or month after surgery as capsular fibrosis ensures.

Accommodative lens designs with single or multiple optic
lens assemblies have been disclosed, for example, in U.S. Pat.
Nos. and U.S. application nos. 2009/0125106, 2005/
0209692, 2007/0156236, 2009/0005866, 2007/0005136,
2009/0248154. Dual optic lenses retain the problem of cap-
sular fibrosis and loss of amplitude/movement even though
they are reported to provide a significant amount of accom-
modation. However, concerns about possible long-term for-
mation of interlenticular opacification remain.

More recently, a lens systems that employs an active-shift
mechanism using repulsive mini-magnets as a means of mak-
ing accommodation partially independent of the zonules and
mechanical properties of the capsular bag was disclosed (see
U.S. Pat. Application Nos. 2009/0204210 and 2007/0118216.
Still other methods of achieving accommodation include
introduction of a polymerizable fluid with a desired refractive
index into the capsular bag (lens refilling). Extensive inves-
tigation into the feasibility of these methods is still needed.

U.S. Publication No. 2009/0234449 discloses an intraocu-
lar lens comprising an accommodating element that is in
contact with a substantial portion of the zonular region; the
accommodating element is positioned relative to optical ele-
ment and configured to cooperate with the ciliary muscle, the
zonules and/or the vitreous pressure in the eye to effect a
shape change to the optical element. According to the 449
publication, prior art multiple lens systems can be cumber-
some and also require an axial displacement unachievable
with a collapsed capsular bag and resulting ineffective
accommodative mechanisms.

The need remains therefore, for an intraocular lens system
and an effective mechanism for improving the accommoda-
tive capacity of an IOL following implantation. None of the
current lens concepts take into account that the devitalized
capsular bag after cataract surgery changes its physical prop-
erties from an elastic sphere to a contracted rigid disc.

SUMMARY OF THE INVENTION

Briefly, the present invention provides an intraocular lens
system and method for improving accommodation that rem-
edies the loss of axial and centrifugal movement caused by
shrinkage and loss of flexibility of the capsular bag following
implantation of conventional lens systems. A lens system of
the present invention includes a flexible optic holder compris-
ing a plurality of zonular capture haptics, in particular, regu-
larly-spaced haptics that are adapted to allow or facilitate
fusion of the capsular bag following placement of the optic
holder within the capsular bag and ultimately to permit the
sectioning of the fused capsular disc. During fusion, each
haptic becomes permanently entrapped in its respective cap-
sular disc section; sectioning frees adjacent haptics from each
other; each haptic can, therefore, move independently in
response to ciliary muscle and zonular forces on the capsule.
The action of the zonular capture haptics can be translated to
different types of optics suited to provide accomodative
amplitude. The restored elasticity of the present accomoda-
tive IOL system, which allows the optic to return to a resting
state when zonular tension is released, is provided by angu-
lated haptics which straighten under zonular tension, by the
elasticity of the optic or a combination of both.
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The novel optic holder of the invention is implanted in two
stages: first, the optic holder (which may or may not include
an integral optic at this stage) is implanted and sufficient time
is allowed for fusion of the anterior and posterior leaves of the
capsular bag around the implanted device. In a second stage,
the fused and fibrosed capsular bag is sectioned at regular
intervals determined by spaces between the haptics of the
optic holder, to reduce its rigidity, thereby restoring some of
the movement lost during fusion of the capsule, fibrosis and
formation of the capsular disc. The force of the zonules is
uniformly transmitted to the lens via the entrapped haptics.

Unless it is already an integral part of the zonular capture
haptic, the optic of the lens system may be inserted into the
haptic during a second stage of the procedure. Any mechani-
cal means or chemically-induced tensioning or positioning of
the haptic/optic complex, which may have been employed to
control the accomodative state of the haptic-lens complex
during the fusion and contraction of the healing capsular bag
would be removed at this juncture.

In one aspect, therefore, the present invention relates to a
method for improving accommodation with an intraocular
lens (IOL) system, the method comprising introducing a flex-
ible optic holder with zonular capture haptics into the capsu-
lar bag of an eye of a subject and allowing a period of time
sufficient for fibrosis of the capsule to occur so that the zonu-
lar capture haptics are captured within the fused capsule.
During this time the eye may be maintained in either an
unaccommodative or accommodative state by administration
of'an agent to inhibit or induce accommodation, for example,
atropine or pilocarpine, respectively. Alternatively, mechani-
cal means may be used to retain the capsule in a flattened and
maximally (unaccommodated) or minimally (accommo-
dated) expanded configuration. Apposition of the anterior and
posterior leaves of the capsule to facilitate fusion may also be
achieved by introduction of an air bubble anterior to the
capsular bag. Other mechanical, chemical or biological
means may be utilized to enhance the adhesion of the anterior
and posterior capsule.

In a second stage, cuts are made in the fibrotic capsular disc
at sectioning intervals between the zonular capture haptics of
the optic holder. In some embodiments, during this second
procedure, the optic is inserted into the holder.

In a related aspect, the invention relates to a flexible optic
holder comprising an arrangement of zonular capture haptics
that permits 1) complete integration of the haptics during
fusion of the capsule to form a capsular disc and 2) sectioning
of the fused capsular disc. The optic holder comprises a
plurality of hollow closed-loop or fenestrated haptics that
extend outwardly from the center of the optic holder to define
a disc that is roughly coextensive with the capsular disc and
provides a template for sectioning of the disc following
fusion. The optic holder of the invention is configured to
provide support for an optic, to facilitate fusion and fibrosis of
the capsular disc, to allow sectioning of the fused capsular
disc and to uniformly translate force from the zonules to the
optic.

In one aspect, the invention relates to an intraocular lens
system for implantation in a capsular bag of an eye, compris-
ing 1) a flexible optic holder comprising a plurality of haptics
that extend outwardly from the center of the optic holder with
sectioning regions therebetween where the haptics define a
disc that is roughly coextensive with the capsular disc; and 2)
an optic adapted to fit into the optic holder. The intraocular
lens system is configured to be coextensive with the capsular
bag when placed therein and to become fixed within the
capsular bag once fusion of the capsular bag has occurred.
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The optic holder comprises a plurality of regularly spaced
haptics, for example, from 3 to 120 haptics. In an alternate
embodiment, the flexible optic holder comprises a single
haptic with a fenestrated structure or of a surgical mesh or
similar woven material with holes sufficiently large to allow
contact and fusion of the anterior and posterior capsule
through the fenestrae or holes. The haptics are spaced at
regular intervals, with the space between adjacent members
defining a sectioning region.

These and other objects, features and advantages of this
invention will become apparent from the following detailed
description of the various aspects of the invention taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a and 15 are illustrations of one embodiment of a
flexible optic holder of the invention; FIG. 15 shows the optic
holder in its expanded form.

FIGS. 2a and 2b show one embodiment of the invention
inside the capsule of an eye prior to (2a) and following sec-
tioning of the capsular bag (25).

FIG. 3 is a schematic showing the position of the optic in
the unaccommodated (top) and accommodated (bottom)
states. During accommodation, the optic moves anteriorly
(shown as downward); the dotted line indicates the position to
which the optic returns when in the unaccommodated posi-
tion.

FIG. 4a shows an alternate embodiment of the optic holder
in the capsule, prior to sectioning, in which an optic has been
secured. FIG. 4b shows the position of the haptics relative to
the optic during accommodation; FIG. 4¢ shows the relative
positions of the haptics and the optic under zonular tension
(un-accomodative state). A staple-like retainer, for stabilizing
the optic during fusion is also shown.

FIG. 5a shows an embodiment in which a snap-like fas-
tener is used as optic attachment means for securing optic in
optic holder; 556 shows the relative positions of the haptics and
optic attachment means when the optic holder is fused within
the capsule; 5S¢ shows the relative positions of the haptics and
optic during accommodation following sectioning of the cap-
sular disc.

FIG. 6a shows anterior and posterior views of a dual-optic
system in which two optic holders (black and gray) are used;
FIG. 65 shows the position of the two optics during accom-
modation.

FIG. 7a shows an embodiment of the dual-optic system in
which optics are an integral part of the optic holders; the
positions of the two optics during accommodation (75), and
unaccommodation (7¢) are shown.

FIG. 8 is an embodiment of an optic holder with a single
dough-nut shaped haptic made of a woven or mesh-like mate-
rial that can be cut, for example, with surgical scissors. A side
view of the optic/optic holder is shown with a retainer,
mechanical means for maintaining the minimum diameter
(maximum contraction) of the capsular bag during fusion.

FIG. 9a shows an embodiment of the optic holder with an
integrated flexible optic that approximates the natural lens; in
the absence of zonular tension (accommodation), the optic is
more spherical (96) than when it is in the unaccommodated
state (9¢).

FIG. 10 is a photograph of an experimental model of a
haptic design of the invention.

FIG. 11 includes a computer generated image and a sche-
matic to illustrate the relative positions during accommoda-
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tion of the haptics and a non-flexible optic using the optic
holder of the present invention after the fused capsular bag
has been sectioned.

FIG. 12 includes a computer generated image and a sche-
matic to illustrate the relative positions of the haptics and
non-flexible optic in the unaccommodative state using the
optic holder of the invention.

FIG. 13 includes a computer generated image to illustrate
radial movement of the haptics when optic holder of the
invention is used with a flexible (stretchable) optic.

DETAILED DESCRIPTION OF THE INVENTION

All patent applications, patents and other references cited
herein are hereby incorporated by reference in their entirety
into the present disclosure.

In ophthalmology, the term “haptic” refers to a support
structure that extends out from an optic element of an
intraocular lens, for holding the lens in place within the cap-
sular bag of the eye. For purposes of the present invention,
“haptics” are sometimes referred to as “zonular capature hap-
tics” and refer to structures or material that not only assist
with placement and centration of the lens within the capsule,
but are frame-like or fenestrated structures, which permit or
facilitate fusion of the anterior and posterior capsules follow-
ing removal of the natural lens and placement of the artificial
lens so that the haptics become securely entrapped within the
fused capsule. The haptics define individual “sections” of the
capsule which can be separated after fusion has occurred by
making radial cuts in the capsule, specifically, beginning near
the center and extending out to the equator of the capsule.
Following sectioning, each haptic is contained within a sepa-
rate section of the capsule. The haptics of the optic holder of
the invention have features which specifically enable it to
become integrated into the fused capsule during fibrosis and
then uniformly translate the movement that results from con-
traction and relaxation of the ciliary body to the optic.

As used herein, the term “retainer” refers to a removable
rigid device that is utilized to maintain the IOL system in
controlled state of accommodation during the healing, fusion
period and is removed once fusion is complete. For example,
IOL systems, which rely on angulated haptics as a mechanism
of accommodation, would be maintained in an un-accommo-
dated state during fusion of the capsular bag; keeping the
optic holder in a flat planar configuration allows maximum
contact between the anterior and posterior capsule to enhance
fusion and eliminate distortion of the capsular bag. In a single
optic system, for example, the retainer may consist of a rigid
rod with right angle extension inserting into each diametri-
cally opposed pair of haptics. In a double optic system, a
simple suture ligation may be sufficient to maintain the two
optics in apposition to each other, reducing the angle of the
posterior and anterior haptics to a flat planar configuration.
For flexible, prefilled or fillable pouches, the restraining
device may be utilized to maintain the IOL system in an
accommodated position to encourage the contraction of the
capsular bag to a minimum diameter, thereby maximizing the
ability of the IOL system to stretch during relaxation of
accommodation after the sectioning of the capsular bag.

Such a device may be mechanical or chemical, and may be
released by chemical, mechanical, laser or optical means.

As used herein, the term “fenestrated” indicates the pres-
ence of an opening or openings that allows for contact
between the anterior and posterior capsule thereby facilitat-
ing fusion of the capsule through the opening(s).

Conventional accommodating lenses typically involve
converting diametral movements of the ciliary muscle into
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forward and backward movement of an optic portion of the
IOL relative to the retina. For example, the only currently
marketed accommodating IOL is a rigid, single optic IOL
designed to rely on a forward translation of the optic to
produce an increase in optical power of the eye. Movement of
the IOL is produced by ciliary muscle contraction, capsular
bag elasticity and/or suggested changes in vitreous cavity
pressure to create an optical change in the eye.

However, implantation of the IOL into the capsule is fol-
lowed by a natural physiological process not unlike applying
a shrink-wrap film, in which the anterior and posterior cap-
sular bag surfaces fuse around the haptics and seal the IOL
within the fibrotic capsule. Furthermore, the fusing capsule
undergoes fibrosis. During fibrosis the bag undergoes further
contraction and loss of elasticity. As a result of this process,
the IOL is immobilized within the fibrosed capsular disc and
movement of the optic along the optical axis is extremely
limited.

The present invention is directed to an optic holder having
a haptic system designed to restore capsular flexibility lost
during fusion and fibrosis. This haptic system allows an
implanted lens to transition more effectively between the
accommodated and unaccommodated states, that is, in a fash-
ion similar to the natural lens in response to forces applied to
the capsule by the ciliary muscle and zonules. It achieves this
by employing a haptic system that is flexible and becomes
securely integrated into the fused capsular disc and allows for
the capsular disc to be cut into sections, which has the effect
of reducing the rigidity of the fused capsular disc and allows
the optic holder to expand.

The present invention, therefore, is directed to a flexible
optic holder comprising a plurality of haptics arranged in a
circle and extending outwardly from a center portion of the
optic holder (see FIGS. 1a and 15). In addition to providing
centration of the optic within the capsule like the haptics in
conventional intraocular lenses, the haptic system of the optic
holder of the present invention provide closed-loop, frame-
like structures that allow contact between the anterior and
posterior capsules so that the process of capsular fusion and
fibrosis are not impeded, thereby creating a skeletal support
for the capsular disc. The natural post-phacoemulsification
healing process is important for integration of the haptics into
the capsular disc. Furthermore, the haptics are regularly
arranged around the optic holder ring with a space between
adjacent haptics to permit the fused capsular disc to be cut at
regular intervals.

The haptics of the optic holder of the invention may be rigid
or semi-rigid structures and may be made from a generally
continuous element or a single continuous element of varying
widths or thicknesses as long as the ability of the anterior and
posterior capsules to securely fuse through the haptic is pre-
served. Haptics are made of a suitable nonabsorbable surgical
material such as surgical wire, suture or the like. In one
embodiment, haptics are constructed of polypropylene suture
material, such as Prolene® (Ethicon, Somerville N.J.) The
haptics of the optic holder may optionally include additional
structures within the haptic frame, such as cross bars or
anchors (for example, as shown in FIG. 1), to reinforce the
haptic within the capsule following fusion. Anchors may be
T-shaped, or a grid with cross-members that cross the length
and/or width of the haptic.

The present invention also provides a two-stage process for
inserting into an eye the intraocular lens system of the inven-
tion to achieve an improved level of accommodation. In one
embodiment, evacuation of the capsular bag is followed by
placement within the capsular bag of an optic holder that
comprises one or more haptics that define a capsule-reinforc-
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ing disc and which will ultimately receive the optic of the IOL
system. Implantation of the haptic is followed by a healing
interval, that is, a period of time sufficient to allow the anterior
and posterior capsular bag surfaces to fuse together through
and around the haptics of the optic holder thereby sealing the
haptics within the fibrotic capsule. In one embodiment of the
method, fusion of the capsular bag around the haptic occurs
under conditions in which ciliary body movement is
restricted, for example, by atropine-induced cycloplegia or
pilocarpine-induced accommodation; paralysis of accommo-
dation movement optimizes capsular disc size, and enhances
fibrosis of the capsule. Alternatively, mechanical means for
maintaining the capsule in the unaccommodative or accom-
modative state, for example a retainer, may be employed to
achieve the desired capsular disc size. The absence of an
accommodating optic during the phase of capsular fusion
allows the optic holder to be free of mechanical strain and
capsular bag distortion during the fusion and fibrosis period.

During the second stage the capsular disc and incorporated
haptics are sectioned to reduce the rigidity of the capsular bag
so that the force exerted by the zonules can more effectively
be transmitted to the capsule and permit movement of the
optic along its optical axis and in the case of flexible optics,
accommodative and unaccommodative movement caused by
contraction of the ciliary muscle and/or zonular tension. Cuts
are made radially and at regular intervals between the haptics,
(see FIG. 3) extending from the visual axis to the equator of
the capsular disc. The accommodating optic may be inserted
into the ring of the optic holder at the time of sectioning, either
before or after sectioning. The optic contains means for secur-
ing the optic into the lens holder, for example a circumferen-
tial releasable connecting rib or series of releasable connect-
ing tabs, pins, plugs or the like that snap into a corresponding
receptacle: a groove, notch or hole on the inner edge of the
haptic.

The intraocular lens system of the invention comprises a
rigid or flexible optic, single lens or multiple lenses, or fillable
or pre-filled, and in one embodiment, an accommodating
optic and optic holder are inserted as a single unit at the time
ofinitial cataract surgery. Such an integrated intraocular lens
system may include a restricting device to mechanically or
chemically maintain the system in a specific state of accom-
modation during the fusion and fibrosis of the capsular disc,
for example a maximally accommodated optic and pilo-
carpine-induced pharmacologic accommodation during the
entire duration of capsular fibrosis and fusion. This eliminates
mechanical strain or movement or distortion of the capsular
bag during the fusion/fibrosis phase after the first stage pro-
cedure, optimizing the size of the fibrotic capsular disc, seal-
ing of the haptic members in the capsular disc and resting
tension on the zonlues.

During the second stage, radial cuts are made in the cap-
sular disc, between the haptics, and extending from the visual
axis to the outer edge of the capsular disc. This releases the
restraining effect of fibrosis on the now segmented, capsular
bag. An optic restraining device, if employed, is also removed
at this time allowing the accommodating optic to respond to
the zonular tension transmitted by the haptics during relax-
ation of accommodation, or to return to its resting accommo-
dating state during contraction of ciliary body and relaxation
of the zonules.

The method of the present invention for the implantation of
an intraocular lens, therefore, includes making a plurality of
regularly-spaced radial cuts around the capsule/haptics,
extending from the visual axis to the edge of the capsular bag.
Sectioning alters the rigidity of the capsule following capsu-
lar fibrosis/fusion so that the tension and relaxation of the
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zonules is more effectively translated to the capsule thereby
enhancing spatial displacement of the optical element.

Uniform and complete natural, therapeutically-assisted or
-enhanced fusion of the capsule around the haptic prior to
optic placement ensures uniformity of sectioning essential to
centration and stability of the optic once it is inserted.

Following insertion, the patient undergoes a recovery
period of one to six weeks, preferably two to three weeks, for
complete fibrosis of the capsule to occur. A second surgical
procedure is performed to restore “elasticity” to the capsule
by making radial incisions in the capsule at regular intervals
forming roughly triangular or trapezoidal sections, each of
which contains one of the haptics of the optic holder.

By “sectioning” the capsular disc, greater movement of the
optic along the optical axis is achieved. Each haptic-rein-
forced section of the sectioned disc is generally separate from
the others, held together by the inter-haptic connectors of the
lens holder and the optic, when it is positioned within the
optic holder. As a result of the sectioning, however, the force
generated by the zonules is more effectively transmitted to the
optic.

It is hypothesized that a 1 mm change in capsular bag
diameter results in 2 mm anterior/posterior optic movement.
A 12 mm capsular bag under zonular tension, (i.e. unaccom-
modated) collapsing to 11 mm in diameter as a result of the
AIOL tension will result in a 2 mm anterior displacement
during accommodation. Expected ranges of total accommo-
dation with rigid single and double optics and flexible
deformable optics are shown in Table 1.

TABLE 1
Flexible
Single Optic Dual Optic Optic

Actual 2D 6D 4-7D
accommodation
Pseudo 1.5-2D 1.5-2D 1.5-2D
accommodation
Total 3.5-4D 7.5-8D 4.5-9D

accommodation

Intraocular Lens System

The intraocular lens system of the invention comprises 1) a
flexible optic holder specifically adapted to permit fusion of
the capsule and sectioning of the capsular disc once fusion is
complete and 2) an optic. The optic holder comprises a plu-
rality of haptics adapted to receive and secure the optic(s).
The optic holder supports the optic around its equator and
couples the optic to the capsular bag of the eye. Following
extraction of the natural lens and placement of the flexible
optic holder of the invention into the capsular bag, the natural
healing process causes the optic holder to become entrapped,
“capturing” the capsule, when the anterior and posterior
leaves of the capsular bag fuse together. Subsequently, radial
cuts to the capsule allow the sections of the fused capsule and
the captured haptics to move independently of the others in
response to zonular tension.
Optic Holder with Zonular Capture Haptics

The intraocular lens of the invention comprises a optic
holder with zonular capture haptics, that is, haptics, which by
their closed-loop design, allow maximal fusion of the anterior
and posterior capsule through the haptics and permit the
capsule to be sectioned following fusion, so that, in response
to tension by the zonules, each haptic is able to move radially
away from the center of the optic holder and then return to the
initial position when zonular tension is released. The haptics



US 9,220,590 B2

9

become fused within the capsular bag and enables the capsule
to be sectioned into a plurality of capsular “sections.” The
haptics provide fixation, centration and stability of the optic
(s) within the eye and provide a skeletal support for the
capsular bag so that its rigidity can be reduced by cutting it
into sections.

One embodiment of an optic holder of the present inven-
tion is shown in FIG. 1. Optic holder 10 comprises a plurality
of haptics 20 extending outwardly from the center of optic
holder 10. The arrangement of haptics 20 generally defines a
ring that receives an optic 80, and haptics 20 further comprise
optic attachment means 50/52 to hold the optic 80 securely in
place. In this embodiment, haptics 20 are roughly trapezoidal
in shape. Adjacent haptics 20 are connected via an inter-
haptic loop or connector 30 of flexible material so that the
inner edges of haptics 20 form a continuous ring to which the
optic is ultimately attached.

In some embodiments, optic holder 10 is flexible (FIG. 15).
The haptics 20 are spaced apart at regular intervals to gener-
ally form a disc that is roughly coextensive in size with the
capsular bag and retains the circular shape of the fused cap-
sular disc. Following placement of an optic holder of the
invention into the capsular bag, the capsule will shrink and
fuse around the optic holder (much like shrink-wrap). As
shown in FIG. 24, once fusion of the capsule is complete, cuts
are made between the haptics of the optic holder. This allows
the sections to move somewhat independently of each other.

FIG. 2a shows an embodiment of an optic holder of the
invention within the unsectioned capsular bag (shaded area).
Following sectioning between haptics (FIG. 24), the optic
experiences improved freedom of movement, compared to
the unsectioned capsule in response to zonular tension.

In FIG. 3, the positions of the haptics and optic of any
intraocular lens, including conventional intraocular lenses,
once the capsule has fused and become fibrosed are shown in
the upper panel. The bottom panel shows anterior movement
of the optic (shown as downward movement) made possible
by sectioning the fused capsule using the optic holder of the
present invention.

FIG. 4a shows an embodiment of an optic holder 100 in
which an optic 180 has been secured prior to sectioning of the
capsular bag; sectioning lines 184 are indicated. The position
of'the optic 180 and haptics 120 during accommodation (456)
and the unaccommodative state (4¢) are shown.

FIG. 5 shows an embodiment of optic attachment means
52/50, for example, a pin 52 and receptacle 50 snap-like
fastener, by which optic 80 is secured in optic holder. Because
the haptics are angulated, without any other force in play,
insertion of the optic into the holder forces the haptic into a
roughly 30° angle with the optic.

In one embodiment (see FIGS. 6 and 7), a pair of anteri-
orly- and posteriorly-angled optic holders are used in an
alternating arrangement or configuration. The anterior haptic
will receive an anterior optic, while the posterior one will
receive a posterior optic. In the dual-optic system, during
accommodation, zonular tension is released and the haptic
system returns to its resting state of maximum angulation of
the optic attachment means causing the two lenses to move
axially away from each other, thereby providing increased
accommodative amplitude.

When tension is applied to the optic holder during relax-
ation of ciliary body, the haptics straighten thereby causing an
axial displacement of the optics towards each other (as shown
in FIG. 7¢). With a dual-optic system, maintenance of the
appositional relationship of anterior and posterior optics is
important to ensure uniform fusion of the capsule. This may
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be achieved mechanically or through the use of therapeutic
agents that induce unaccommodation.

Referring to FIG. 8, in one embodiment, the optic holder
300 comprises an optic 380 or optic holding member at its
center and a single doughnut-shaped haptic 320 extends out-
wardly from the optic 380 and is made of a woven material or
mesh or fenestrated material that 1) permits fusion of the
capsular bag and 2) can be sectioned or cut. Radial sectioning
lines (not shown) may be indicated on the capsule-capture
haptic and small holes near the optic/optic holding member
provided for starting the cut.

FIG. 9 shows an embodiment in which haptics 420 and
optic 480 comprise a single unit, with a flexible optic 480, or
fillable or prefilled optic pouch attached directly to the haptics
420. Such an optic has a predetermined dioptric power in its
resting state (95). The inherent optic elasticity allows stretch-
ing of the optic equator and flattening of the lens curvature in
the un-accomodative state (9¢) and return to a more spherical
shape (946) during accommodation when zonular tension is
released.

Flexible optics, fillable or prefilled optic pouchs are known
in the art and can be integrated or adapted for use with the
optic holder of the invention. The adaptation of any elastic
optic embodiments to a zonular capture optic holder would
enable the optic to change shape and accommodate.

In some embodiments, the haptics further comprise an
anchor or other support structure for promoting fusion/fibro-
sis of the capsular bag and integration of the haptic within the
capsular bag. The anchor may be any shape, for example,
T-shaped, or size which will have the effect of securing and
reinforcing the haptic within the capsular bag.

Implantation of the Optic Holder

In an initial procedure, the optic holder is placed in the
capsular bag of the eye, and the anterior and posterior leaves
of'the capsular bag are allowed to fuse together securing the
optic holder within the fused capsular bag or disc. Uniform
healing of capsule around optic holder ensures centration of
the optic once it is placed in optic holder.

In a second procedure, a number of cuts are made in the
capsular disc between the haptics of the optic holder. The cuts
extend from the visual axis to the outer edge of the capsular
disc. Additionally, the posterior zonules may become stiff
further limiting anterior/posterior movement. In some situa-
tions, it may be desirable to cut the posterior zonules.

In one embodiment, the optic holder comprises a ring
structure in which at least three capsule-capture members
(haptics) extend outwardly from the center of the ring (see
FIG. 1). The number and size of capsule-capture members of
the optic holder varies depending on the number of sections
which the clinician determines to be optimal. In so determin-
ing, an optimal number of sections may be determined to be
that number which will permit the greatest axial movement of
the optic that can be achieved without compromising the
integrity of the capsular bag. Further considerations regard-
ing the number of sections to be made include allocating an
amount of time for sectioning which the clinician feels is
appropriate for the safety and well-being of the patient.

The haptics of the optic holder are made from inert or
biocompatible materials known to those of skill in the art, for
example, silicone, polypropylene, acrylic polymers or the
like. Haptics are made in an open configuration (loops), and
may be of any shape, for example, generally triangular or
trapezoidal, which, as a group roughly define a disc that is
coextensive with the capsular bag. Generally, the outer edge
of'the haptics extend to the equator of the capsular bag to form
a capsule-reinforcing disc which is roughly coextensive with
the capsular disc, and by virtue of their shape or porosity,
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permit fusion of the anterior and posterior leaves of the cap-
sular bag to form a capsular disc encasing the haptic.

The number and configuration of individual members are
chosen in accordance with considerations discussed supra to
anchor the optic-holder ring in the capsular bag and form an
internal “frame” on which the fused capsular disc is sup-
ported. To maximize or minimize the diameter of capsular
bag during fusion thereby impacting the ultimate size of the
fused capsular disc, accommodation can be controlled during
fusion of the capsular bag by administration of an agent to
inhibit or induce accommodation.

Optics

The intraocular lens system of the invention may comprise
multiple lens holders and therefore, be able to hold one or
more optics. Optics are generally symmetrical about the opti-
cal axis. Examples of suitable optics are well known in the art
and can be adapted for use with the optic holder and zonular
capture haptics of the invention. These include optics that are
flexible, deformable, foldable, or rigid, preformed or fillable
and which are made from a liquid, solid or semi-solid mate-
rial. In one embodiment, if a flexible optic is used, it can assist
in accommodation not only by anterior-posterior displace-
ment, but also by changing its radius of curvature.

Examples of suitable optic materials include silicone(s),
acrylics, hydrogels and other inert or biocompatible polymers
known to those of'skill in the art. In one embodiment, the optic
comprises a means for securing the optic into the haptic, for
example a circumferential releasable connecting rib or series
of releasable connecting tabs or pins that snap into a corre-
sponding groove, notch or hole on the haptic.

Haptics may incorporate any means suitable for attaching
and securing the optic; these are well known in the art.

Sectioning of capsular disc after fusion and fibrosis of the
haptic therein can be accomplished by virtue of a small gauge
(for example, 23 or 25 gauge) trans-conjunctival vitrectomy
system with trocars and cannulas placed diametrically
opposed to the section line in the capsule/haptic where the
section is to be made. A small gauge (for example, 23 or 25
gauge) scissor is introduced through a cannula and used to cut
the capsule from the visual axis to the outer edge of the
capsular disc.

While several aspects of the present invention have been
described and depicted herein, alternative aspects may be
effected by those skilled in the art to accomplish the same
objectives. Accordingly, itis intended by the appended claims
to cover all such alternative aspects as fall within the true
spirit and scope of the invention.

A haptic arrangement was manufactured from 4-0 surgical
Prolene sutures with 7-0 surgical Prolene retention bands
(FIG.10). The function of the retention bands are to maintain
the shape of each haptic loop, to function as an additional
retaining anchor within each haptic and to maintain the dis-
tance between the haptics during the sterilization process.
The surgical procedure for implantation of an optic holder of
the invention consists of two stages.

All procedures related to the use of animals conform to the
Guide for the Care and Use of Laboratory Animals (National
Institutes of Health, National Research Council) and are
approved by the Wisconsin National Primate Research Cen-
ter. The animals are housed in facilities accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care International (AAALAC). Animal subjects are
paired or individually housed. Diet consists of monkey chow
supplemented with fresh fruit and vegetables. Water is freely
available. All animals are observed daily by a veterinary
technical staff and caretakers for signs of ill health.
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Adult Rhesus monkeys (Macacca mulatta) of either sex
without any ocular disease, are the subjects of the following
experiments.

At Stage 1, the treated eye is rendered aniridic by complete
surgical removal of the iris. The absence of the iris facilitates
evaluation of the optic holder’s performance. Standard cata-
ract removal by small, clear corneal incision and phacoemul-
sification is followed by implantation of the lens holder of the
invention via standard 2 mm lens injector (Photo 2). The
treated eye is maintained in a pharmacologic state of forced
accommodation by the administration of pilocarpine drops 4
times per day. This allows the zonules to be free of tension
during the healing, fibrosis, contracture phase of the capsular
bag. A minimum capsular disc size is thus obtained, which is
anticipated to securely incorporate the haptics of the lens
holder in between the fused anterior and posterior capsules.
Once the fibrosis phase is complete, approximately 2-4 weeks
after the Stage 1 surgery, the animal is anesthetized again for
the Stage 2 surgery.

A 23 or 25 gauge standard vitrectomy instrument is
employed. Four trans-conjunctival cannulas are inserted at
the standard pars plana location, coinciding with the planned
capsular section lines as defined by the location of the spaces
between the haptics. A central posterior capsulotomy is per-
formed with the vitrectomy instrument. A 23 or 25 gauge
Vitreoretinal scissor is introduced via each cannula to per-
form radial cuts extending from the edge of the posterior
capsulotomy to the equator of the capsular bag, cutting across
the fused capsular sheets, the 7-0 Prolene suture extending in
between capsular members, to the edge of the capsular disc,
ensuring that no connection remains between the individual
sections of capsular disc capsule. The only connection
between the sectioned capsules and entrapped haptics is the
flexible inter-haptic loop extending from one haptic to the
next.

Administration of pilocarpine drops is discontinued post-
operatively. Once the eye has recovered from the surgical
intervention, the eye is challenged with pharmacologic
accommodation and relaxation of accommodation under
anesthesia with short acting pharmacologic agents while the
eye is monitored and videographed. It is anticipated that
during relaxation of accommodation, zonular tension is pro-
duced and transmitted to the individual segments of the
former capsular disc, which now move independently. Each
haptic of the optic holder should move centrifugally and away
from each other. When accommodation is induced pharma-
cologically, the tension of the zonules is released and the
elasticity of the inter-haptic loops returns haptics to a closer
configuration. A change in diameter of the optic holder of up
to 1 mm is expected, based on previously published data.

I claim:

1. A method for improving accommodation of an intraocu-
lar lens system in an eye, the method comprising:

(a) providing the intraocular lens system comprising a

plurality of spaced radial haptics;

(b) positioning at least a portion of the system in a capsular

bag of the eye;

(c) allowing anterior and posterior leaves of the capsular

bag to fuse; and

(d) making a plurality of substantially radial cuts in the

fused anterior and posterior leaves of the capsular bag to
produce sections each containing a haptic.

2. The method of claim 1, wherein the system comprises an
optic and an optic holder, the method further comprising
inserting the optic into the optic holder after the capsular bag
has fused.
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3. The method of claim 1, wherein said intraocular lens
system comprises an optic holder comprising the plurality of
radial haptics.

4. The method of claim 1, wherein said plurality of haptics
are regularly spaced and define sectioning intervals therebe-
tween for the substantially radial cuts.

5. The method of claim 1, further comprising maintaining
the eye in an unaccommodative state during the fusion of the
capsular bag.

6. The method of claim 1, further comprising maintaining
the eye in an accommodative state during the fusion of the
capsular bag.

7. The method of claim 5, wherein maintaining the unac-
commodative state comprises administering an agent to
inhibit accommodation.

8. The method of claim 7, wherein said agent comprises
atropine.

9. The method of claim 6, wherein maintaining the accom-
modative state comprises administering an agent to promote
accommodation.

10. The method of claim 9, wherein said agent comprises
pilocarpine.

11. The method of claim 1, wherein the capsular bag fuses
within about 1 to about 6 weeks.

12. The method of claim 1, wherein the capsular bag fuses
within about 2 to about 4 weeks.
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13. The method of claim 1, wherein said cuts extend from
a visual axis to an edge of the fused capsular bag.

14. The method of claim 1, wherein the system comprises
an optic and an optic holder, and wherein both the optic and
the optic holder are positioned in the capsular bag prior to
fusion.

15. The method of claim 1, wherein the system comprises
an optic and an optic holder, the method further comprising
releasably securing the optic in the optic holder.

16. The method of claim 1, wherein said plurality ofhaptics
comprises no more than 120 haptics.

17. The method of claim 1, wherein the system further
comprises a restricting device configured to maintain the
haptics in a specific state of accommodation during fusion of
the capsular bag.

18. The method of claim 1, wherein the system further
comprises a retainer adapted to achieve a desired capsular
disc size.

19. The method of claim 1, wherein the plurality of sub-
stantially radial cuts comprises a plurality of single cuts
between the plurality of radial haptics.

20. The method of claim 1, wherein each haptic comprises
a closed-loop structure.

#* #* #* #* #*



